动脉粥样硬化模型
金黄地鼠归类于小型啮齿动物,用于研究血脂和动脉粥样硬化的地鼠一般都是金黄地鼠(golden hamster)。地鼠的血脂代谢与大鼠、小鼠有较大程度不同,包括拥有CETP、血浆胆固醇将近一半在LDL中,相比较而言,地鼠血脂接近人类。除外,地鼠试验容易。因此,豚鼠被常用于动脉粥样硬化研究或者造模。
(1)金黄地鼠血脂与人类比较接近。
(2)能够发生动脉粥样硬化,可以到达动脉粥样硬化的早期(脂质条纹期,内皮下泡沫细胞)。
(3)动物小而温顺,容易喂养。
(1)金黄地鼠有多种品系,不同品系之间动脉粥样硬化模型的难易程度不同,相比较而言,F1B品系最理想。
(2)血浆HDL浓度比较高,对抗动脉粥样硬化;
(3)血浆胆固醇升高既引起动脉粥样硬化,又因为发挥抗氧化作用而削弱动脉粥样硬化进程和程度。
正是这些缺点,金黄地鼠动脉粥样硬化模型的复制方法与其他动物有所不同。
高脂高胆固醇模型饲料和对高胆固醇饲料两种饲料都可以引起金黄地鼠动脉粥样硬化(位于升主动和主动脉弓)。但是,程度不同:高胆固醇模型饲料可能不会引起动脉粥样硬化,或者动脉粥样硬化程度非常轻微。因此,在进行动脉粥样硬化造模时,一般不用高胆固醇模型饲料造模,只有在研究高胆固醇对动脉粥样硬化形成的影响和机制时采用高胆固醇模型饲料。
所以,下面先介绍动脉粥样硬化造模时高脂高胆固醇模型饲料的使用和造模方法注意事项,然后怎样观察高胆固醇的效应。
金黄地鼠发生动脉粥样硬化的程度对于高脂高胆固醇模型饲料的要求比较高,关键在于对脂肪类型和脂肪酸的构成有较高要求,而主要不在于脂肪含量和胆固醇含量的高低。
饲料中脂肪含量高低取决于研究中是否需要伴有肥胖。
日粮型
以下模型饲料是在本公司标准饲料(低脂)生产过程中添加脂肪和胆固醇,其正常对照饲料应当选用相应的低脂饲料。
产品代码 模型饲料名称 说明
TP 3H303:金黄地鼠高脂高胆固醇模型饲料,10%脂肪,0.2%胆固醇
TP 3H305:金黄地鼠高脂高胆固醇模型饲料,10%脂肪,0.3%胆固醇
TP 3H307:金黄地鼠高脂高胆固醇模型饲料,10%脂肪,0.5%胆固醇
TP 3H310:金黄地鼠高脂高胆固醇模型饲料,10%脂肪,1%胆固醇
TP 3H320:金黄地鼠高脂高胆固醇模型饲料,10%脂肪,2%胆固醇
TP 3H330:金黄地鼠高脂高胆固醇模型饲料,15%脂肪,3%胆固醇
TP 3H340:金黄地鼠高脂高胆固醇模型饲料,17%脂肪,0.1%胆固醇
TP 3H350:金黄地鼠高脂高胆固醇模型饲料,25%脂肪,2%胆固醇
TP 3H360:金黄地鼠高脂高胆固醇模型饲料,30%脂肪,0.2%胆固醇
TP 3H370:金黄地鼠高脂高胆固醇模型饲料,40%脂肪,0.2%胆固醇
如果以上模型饲料不能满足你的要求,请提出!
纯化型
以下模型饲料是纯化日粮,价格相对较高。
产品代码 模型饲料名称 说明
TP 3H405:金黄地鼠高脂高胆固醇模型饲料,10%脂肪,0.2%胆固醇
TP 3H420:金黄地鼠高脂高胆固醇模型饲料,17%脂肪,0.1%胆固醇
TP 3H440:金黄地鼠高脂高胆固醇模型饲料,25%脂肪,2%胆固醇
如果以上模型饲料不能满足你的要求,请提出!
由于高胆固醇饲料喂养金黄地鼠的效果至今没有一致的效果,因此,研究高胆固醇饮食对金黄地鼠动脉粥样硬化的作用和原因至今不清楚。
而可行的方法是,为了研究胆固醇对动脉粥样硬化的作用,可以采用高脂高胆固醇模型饲料与高脂模型饲料的喂养效果进行对比。但是,这其中要注意:
(1)高脂肪饲料喂养也能引起金黄地鼠动脉粥样硬化,并且脂肪类型或者脂肪中脂肪酸的构成比例对动脉粥样硬化有区别。
(2)高脂饲料喂养引起的血脂改变(HDL的改变和nonHDL的改变)个体间差异较大。
(3)在喂高脂高胆固醇模型饲料的金黄地鼠中,只有血浆中nonHDL(即LDL+VLDL)处于高浓度区的金黄地鼠中表现出高胆固醇模型饲料对动脉粥样硬化的促进作用,在低浓度区nonHDL的金黄地鼠中表现为拮抗作用,而在nonHDL浓度处于中间段的动物没有作用。这个浓度区间的界定,要看动物的具体情况。
对于上述描述中有不清楚之处或者其他注意事项,请与南通特洛菲饲料科技有限公司技术部联系。
References:
Agbor, G. A., J. A. Vinson, S. Patel, K. Patel, J. Scarpati, D. Shiner, F. Wardrop and T. A. Tompkins. "Effect of Selenium- and Glutathione-Enriched Yeast Supplementation on a Combined Atherosclerosis and Diabetes Hamster Model." J Agric Food Chem 55, no. 21 (2007): 8731-6.
Berecochea-Lopez, A., K. Decorde, E. Ventura, M. Godard, A. Bornet, P. L. Teissedre, J. P. Cristol and J. M. Rouanet. "Fungal Chitin-Glucan from Aspergillus Niger Efficiently Reduces Aortic Fatty Streak Accumulation in the High-Fat Fed Hamster, an Animal Model of Nutritionally Induced Atherosclerosis." J Agric Food Chem 57, no. 3 (2009): 1093-8.
Dillard, A., N. R. Matthan and A. H. Lichtenstein. "Use of Hamster as a Model to Study Diet-Induced Atherosclerosis." Nutr Metab (Lond) 7, (2010): 89.
Faia, K. L., W. P. Davis, A. J. Marone and T. L. Foxall. "Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Hamster Aortic Atherosclerosis: Correlation with in-Situ Zymography." Atherosclerosis 160, no. 2 (2002): 325-37.
Guo, T., W. Q. Chen, C. Zhang, Y. X. Zhao and Y. Zhang. "Chymase Activity Is Closely Related with Plaque Vulnerability in a Hamster Model of Atherosclerosis." Atherosclerosis 207, no. 1 (2009): 59-67.
Jiang, C. Y., K. M. Yang, L. Yang, Z. X. Miao, Y. H. Wang and H. B. Zhu. "[a 1h Nmr Based Metabonomics Approach to Progression of Coronary Atherosclerosis in a Hamster Model]." Yao Xue Xue Bao 48, no. 4 (2013): 495-502.
Mangiapane, E. H., M. A. McAteer, G. M. Benson, D. A. White and A. M. Salter. "Modulation of the Regression of Atherosclerosis in the Hamster by Dietary Lipids: Comparison of Coconut Oil and Olive Oil." Br J Nutr 82, no. 5 (1999): 401-9.
McAteer, M. A., D. C. Grimsditch, M. Vidgeon-Hart, G. M. Benson and A. M. Salter. "Dietary Cholesterol Reduces Lipoprotein Lipase Activity in the Atherosclerosis-Susceptible Bio F(1)B Hamster." Br J Nutr 89, no. 3 (2003): 341-50.
Mitchell, P. L., M. A. Langille, D. L. Currie and R. S. McLeod. "Effect of Conjugated Linoleic Acid Isomers on Lipoproteins and Atherosclerosis in the Syrian Golden Hamster." Biochim Biophys Acta 1734, no. 3 (2005): 269-76.
Nikkari, S. T., T. Solakivi and O. Jaakkola. "The Hyperlipidemic Hamster as an Atherosclerosis Model." Artery 18, no. 6 (1991): 285-90. Nistor, A., A. Bulla, D. A. Filip and A. Radu. "The Hyperlipidemic Hamster as a Model of Experimental Atherosclerosis." Atherosclerosis 68, no. 1-2 (1987): 159-73.
Quinet, E. M., M. D. Basso, A. R. Halpern, D. W. Yates, R. J. Steffan, V. Clerin, C. Resmini, J. C. Keith, T. J. Berrodin, I. Feingold, W. Zhong, H. B. Hartman, M. J. Evans, S. J. Gardell, E. DiBlasio-Smith, W. M. Mounts, E. R. LaVallie, J. Wrobel, P. Nambi and G. P. Vlasuk. "Lxr Ligand Lowers Ldl Cholesterol in Primates, Is Lipid Neutral in Hamster, and Reduces Atherosclerosis in Mouse." J Lipid Res 50, no. 12 (2009): 2358-70.
Romain, C., S. Gaillet, J. Carillon, J. Vide, J. Ramos, J. C. Izard, J. P. Cristol and J. M. Rouanet. "Vineatrol and Cardiovascular Disease: Beneficial Effects of a Vine-Shoot Phenolic Extract in a Hamster Atherosclerosis Model." J Agric Food Chem 60, no. 44 (2012): 11029-36.
Sima, A., A. Bulla and N. Simionescu. "Experimental Obstructive Coronary Atherosclerosis in the Hyperlipidemic Hamster." J Submicrosc Cytol Pathol 22, no. 1 (1990): 1-16.
Simionescu, M., D. Popov, A. Sima, M. Hasu, G. Costache, S. Faitar, A. Vulpanovici, C. Stancu, D. Stern and N. Simionescu. "Pathobiochemistry of Combined Diabetes and Atherosclerosis Studied on a Novel Animal Model. The Hyperlipemic-Hyperglycemic Hamster." Am J Pathol 148, no. 3 (1996): 997-1014.
Stein, O., Y. Dabach, G. Hollander, G. Halperin, J. Thiery and Y. Stein. "Relative Resistance of the Hamster to Aortic Atherosclerosis in Spite of Prolonged Vitamin E Deficiency and Dietary Hypercholesterolemia. Putative Effect of Increased Hdl?" Biochim Biophys Acta 1299, no. 2 (1996): 216-22.
Vinson, J. A., M. A. Mandarano, D. L. Shuta, M. Bagchi and D. Bagchi. "Beneficial Effects of a Novel Ih636 Grape Seed Proanthocyanidin Extract and a Niacin-Bound Chromium in a Hamster Atherosclerosis Model." Mol Cell Biochem 240, no. 1-2 (2002): 99-103.
Vinson, J. A., K. Teufel and N. Wu. "Red Wine, Dealcoholized Red Wine, and Especially Grape Juice, Inhibit Atherosclerosis in a Hamster Model." Atherosclerosis 156, no. 1 (2001): 67-72.
Yamanouchi, J., A. Takatori, S. Itagaki, S. Kawamura and Y. Yoshikawa. "Apa Hamster Model for Diabetic Atherosclerosis. 2. Analysis of Lipids and Lipoproteins." Exp Anim 49, no. 4 (2000): 267-74.